
Beyond the Class:
A look into current trends in
software testing education

-

Anna Rita Fasolino
University of Napoli Federico II, Napoli, Italy

fasolino@unina.it

ERASMUS plus Project 2022-2025 ENACTEST

Motivation

• Software testing is indispensable in software development, yet
often overlooked, contributing to a shortage of expertise in the
software industry.

• Becoming an experienced software tester requires
understanding many strategies for writing high-quality test
cases and a significant amount of practice.

• Despite efforts to improve teaching approaches at the university
level, many challenges persist for better preparing students for
their future careers.

2

Questions we will try to answer in this talk

• What are current challenges in software testing education?
• What are the solutions proposed to address these challenges?
• What is the state of the practice in Teaching Testing at

University level?
• What are the future perspectives in Software Testing

education ?

3

Challenges in
Software Testing
Education

4

Challenges reported in the literature
• Challenges reported by a SLR by Scatalon et al. (2017) [1]

• of integrating software testing into introductory programming courses (based
on 158 papers)

• Challenges described by Delgado-Perez et al. (2021) [2]
• of instructing students in the use of testing techniques and the importance of

software testing within the software development
• Challenges analysed in the Systematic Mapping study by Garousi et

al. (2020) [3]
• Nine categories of challenges emerged from more than 200 papers

5

)

[1] Scatalon, L.P. , Barbosa, E.F. , Garcia, R.E. , 2017. Challenges to integrate software testing into introductory programming courses. In: IEEE
Frontiers in Education Conference, pp. 1–9 .
[2] P. Delgado-Pérez, et al. "Mutation Testing and Self/Peer Assessment: Analyzing their Effect on Students in a Software Testing Course," 2021
IEEE/ACM 43rd Int. Conf. on Software Engineering: Software Engineering Education and Training (ICSE-SEET), Madrid, ES, 2021, pp. 231-240.
[3] Vahid Garousi, et al.: Software-testing education: A systematic literature mapping. J. Syst. Softw. 165: 110570 (2020)

https://dblp.org/db/journals/jss/jss165.html

Challenges related to Students and
Educators

6

1.Testing often not well accepted among
students, low motivation, tedious, boring

• Students do not derive a great deal of satisfaction from exposing
flaws in their own programs.

• Students perceive testing as not important, boring and repetitive,
and do not acquire the practice and experience that software testing
requires.

• The programs used in software testing courses are often simple,
only toy programs that are difficult to stimulate students’ interests
and enthusiasms.

• The traditional pedagogical approaches are not sufficient to make
students motivated to write unit tests as they code.

7

2.Tool-related challenges
• Technical issues with testing tools, expecially for

beginners
• The lack of good supporting tools for teaching

testing practices in an introductory level
• Good support for unit testing, but more complex testing

often lacks good, easy-to-use tools
• Testing and Automated testing requires a good

knowledge of programming
• Difficulties in teaching xUnit-style unit testing

frameworks in CS1
• Difficulties with reproducing in class the

development/testing platforms and pipelines which are
vital for working effectively in practice

8

3. Increased cognitive
load for learning testing

• Teaching software testing skills for first year students in
CS courses can be particularly challenging

• students have to deal with peculiarities of the specific
techniques and tools for software testing

• They have to learn additional syntax in order to express their
test cases

• teaching relies heavily on experiential learning

• Teaching Test-Driven Development (TDD) increases technical and
cognitive load for the students.

• TDD requires a change in thinking and does not come naturally to all students
• TDD cycle is difficult to practice

9

Challenges related to Educators

10

4. Suitable course design: Alignment with
industry needs
• Software testing education is

considered too much theoretical
with a lack of practical application
scenarios (Scatalon –survey with
Practitioners 2018)

• There's a gap between book
knowledge (theory) and practice

• Gap between formal education
and industry practices

• Disconnection between theory and
practice leads to less interest by
students

11

• From the educator’s perspective, it is hard to
keep a testing course up-to-date with the
novelties of the field, as well as to come up
with exercises that are realistic

• Incorporating real-world industrial testing
projects in software testing courses would be
necessary but is challenging

5. Suitable course design: Issue of task
"scale" / complexity
• Setting the appropriate

complexity of testing tasks for
students is challenging

• Students perceive test writing to
be irrelevant and more costly
than beneficial due to the small
size of the programming task

12

• Developing software tests
for more complex programs
that have significant
graphical user interfaces
is beyond the abilities of
typical students

• Students in the introductory
CS1 programming course
can have a difficult time
developing and
implementing sufficient
test cases

6. Suitable course design: pedagogical
issues …

13

• Challenges of developing higher-order
thinking (Bloom's taxonomy)

• Traditional Testing lectures would be
most appropriate for conveying factual
and conceptual knowledge at the
remembering and understanding
levels of the Bloom’s Taxonomy

• Students of testing also need to learn
how to analyze situations and problems,
apply techniques, and evaluate their
own work and the work of their peers

Appropriate course materials and teaching
strategies in the classroom are needed!

C. Kaner and S. Padmanabhan, "Practice and Transfer of Learning in the
Teaching of Software Testing," 20th Conference on Software Engineering
Education & Training (CSEET'07), Dublin, Ireland, 2007, pp. 157-166

6. Suitable course design: pedagogical
issues

14

• Educators face the fact that some testing topics are not
conceptually straightforward, not easy to demonstrate
and generalize, and are not all available in a single
textbook

• The software testing laboratory is limited, and so
classroom teaching and practice are not closely related

•
Students often struggle with the concept of testing to
find bugs rather than just testing to show that their
software is operating perfect on a given set of inputs.

• Students need frequent, concrete feedback on how to
improve their performance at many points throughout
their development of a solution, rather than just once at
the end of an assignment.

7. Time/ Resource
Requirements
• Not enough time to teach testing

in programming and software
engineering courses

• Too many topics to be covered in
software testing courses

• It is challenging to evaluate
thousands of assignments
within limited time

• Due to time constraints, it may not
be feasible to assess test cases .

15

8.Challenges w.r.t. integrating software
testing in other courses

• Two options in the curricula design:
• Offering a dedicated course on

software testing? (more time and
resources to cover this complex subject
in more detail, but often considered
tedious...)

• Integrating software testing in other
core courses ?

• Due to several reasons (limited resources,
low motivation, etc.) the teaching of software
testing is often spread across several
programming courses!

16

Challenges of Integrating Software
Testing in other courses

• Decisions on sequencing and course
content.

• Software testing requires students to
have experience in programming.

• Students’ development experience
may be insufficient for them to
understand TDD.

• How to provide an appropriate
feedback and to evaluate the student’s
performance in integrated courses?

9. Not easy to assess students work
• How to effectively and efficiently

evaluate if a student has
accomplished the stated outcome?

• Current assessment techniques
used in automated grading tools for
evaluating student-written software
tests are imperfect.

• In programming courses, instructors
need to assess program
correctness first. Due to time
constraints, it may not be feasible
to assess test cases too.

17

• Code coverage alone is not a
satisfactory measure for test quality

• Far less attention has been given to
assessing the quality of the tests
produced by the students themselves

• Advanced testing techniques like
mutation testing could help in such
regard, but, unfortunately, it is not so
well known outside of test specialists,
and tool support is still rather
unsatisfactory

A synthesis of challenges
Challenge

1 Testing often not well accepted among students, low motivation, tedious, boring
2 Tool-related challenges
3 Increased cognitive load for learning testing
4 Suitable course design: Alignment with industry needs
5 Suitable design of the course: Issue of "scale" / complexity
6 Suitable design of the course: other issues
7 Time/ Resource Requirements
8 Challenges w.r.t. integrating software testing in other courses
9 Not easy to assess students work

18

Possible Solutions

19

How have
been these
challenges
addressed in
the literature?

20

Four categories
of solutions
proposed

Pedagogical
approaches

Teaching
Practices

Teaching Tools

Gamification
approaches

Pedagogical
Approaches

• Software Testing is an experimental activity, so
it should be mostly practical, and Active
learning approaches should be preferred to
Passive ones

• Active learning can essentially be defined as
“students doing things and thinking about what
they are doing” (Bonwell and Eison, 1991).

• Active vs Passive Learning
• Active learning can be facilitated through a

range of teaching approaches that
encourage learners to actively engage with
course materials, one another, and/or with
lecturers. It contrasts with passive
learning of just reading or listening – the
'talking head' style of instruction.

21

A classification of Active learning activities
(https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning)

22

Active Learning Activity Description

Project-based learning PBL is a student-centred methodology that engages students in developing
critical thinking through undertaking authentic, meaningful projects.

Case/scenario/problem/
inquiry-based learning

require students to apply their disciplinary knowledge, critical thinking and
problem-solving skills in a safe, real-world context.

Reflective learning Reflective learning develops students’ critical thinking skills by analysing
experiences to improve future performance.

Collaborative learning CL encompasses activities ranging from classroom discussions to problem-
solving in groups, to working in teams

Experiential learning The learner is an active participant in the educational process, and learning is
achieved through a continuous cycle of inquiry, reflection, analysis and
synthesis

In-class active learning
activities

pedagogical strategies and methods you can utilise in your teaching to spark
engagement or be part of extended and connected learning activities across a
class or course (ex. One-minute paper, Peer-instruction, Think-Pair-Share…)

https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/project-based-learning
https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/case-scenario-problem-inquiry-based-learning
https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/case-scenario-problem-inquiry-based-learning
https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/reflective-learning
https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/collaborative-learning
https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/experiential-learning
https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/class-active-learning-activities
https://itali.uq.edu.au/teaching-guidance/teaching-practices/active-learning/class-active-learning-activities

Some Active Learning and other pedagogical
strategies described in the literature

23

Case
Based

LearningActive
Learning

Collabora
tive

Learning

Peer
Testing

Iterative/
Adaptive
learning

Adaptive
Learning

Teaching
Practices

• Teaching practices that have shown their
effectiveness in helping teachers and
students to improve testing educational
processes

• Four types of practice extracted from
the literature:

• Types of Software to be Tested
• Moments to start talking about Testing in the

curricula
• Ways to evaluate students’ testing learning
• Practical solutions for better teaching testing

24

Recommended Types of Software to be
tested by students

Using free or open-source projects (F/OSS),
rather than toy or student-made software
Students write tests for code produced by
fellow students
Testing on real world applications, in
collaboration with a real industrial company
Testing realistic software

25

The type of software to be
tested is able to affect the
motivation and interest of the
students

Recommended moments to start talking
of Testing

26

Objects first, tests second
Applying the Testing Before Coding
(TBC) method in introductory
programming courses
Early testing

Early introducing software testing
and TDD since CS1 and CS2
courses can help students
become familiar with testing
concepts and motivated to write
unit tests as they code

Recommended ways to evaluate students’
testing learning ways to evaluate students’
testing learning

Providing students with automatic, concrete, incremental feedback on performance
Using Automated assessment of students' testing skills for improving correctness of their
code
Better approaches to evaluate student-written tests, beyond Code Coverage

Subjective Self and Peer assessments

Rapid automated feedback on software tests for complex projects

27

Recommended practices for teaching testing

Using test-driven development in the classroom

Unit testing using the Given, When, Then pattern

Integrating automated unit testing practices in an introductory
programming course
Teaching testing using analysis of Known Bugs, bug-hunting gamification

Using industry-strength tool

28

Teaching
Tools

• Tools, simulators, and environments have been
proposed to support testing learning

• They can help students gain practical
experience and learn testing techniques in an
interesting way

• Three main categories of tools emerge from
the literature:

• Tools that provide a learning environment to guide
students through a learning path, interactively, or with
the support of machine learning techniques;

• Tools that support students in practicing testing in
laboratory settings;

• Tools that exploit a gameful approach to motivate
students to practice testing

29

Learning Environments- examples
• A web-based environment dedicated to software testing (Bug-Hunt- 2007)
• A cyber-learning environment (WReSTT -2014)
• A Web IDE that can guide the students through a pre-defined path of steps to

force them to write tests and specifications (Web-IDE- 2022)
• A web-based assignment submission platform that supports different levels of

testing pedagogy via a customizable feedback engine (code coverage feedback /
inquiry-based learning conceptual feedback) (Testing Tutor- 2020)

• An automated and interactive system designed to help students learn how to
write better test cases, thanks to the feedback they receive on their test cases
(2017)

• …

30

Bug Hunt – Web based environment
• It contains four introductory

lessons on testing terminology,
black and white box techniques,
and testing automation and
efficiency.

• It incorporates challenges in each
lesson and provides immediate
feedback to promote engagement
while students practice the
application of fundamental testing
techniques

• It provides a complete and
automatic assessment of
students’ performance to reduce
the instructor’s load.

31

Sebastian Elbaum, Suzette Person, Jon Dokulil, and Matt Jorde. 2007. Bug hunt:
Making early software testing lessons engaging and affordable. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 688–697.

WReSTT-Cyle- Web-Based Repository of Software
Testing Tutorials: A Cyberlearning Environment

• Initailly started as a Web-Based
Repository of Software Testing Tools

• It evolved in a learning platform based
on three key learning strategies:

• collaborative learning, problem-based
learning (PBL), and gamification.

• The platform encourages the students’
engagement, their collaboration and
teamwork, but also competitiveness

• It is now called SEP-CyLE (Software
Engineering and Programming
Cyberlearning Environment).

32

Peter J Clarke, Debra Davis, Tariq M King, Jairo Pava, and Edward L Jones. 2014.
Integrating testing into software engineering courses supported by a collaborative
learning environment. ACM Transactions on Computing Education (TOCE) 14, 3
(2014), 1–33.

An Automated System for Interactively
Learning Software Testing

• An automated and interactive
system designed to help students
learn how to write better test
cases, thanks to the feedback they
receive on their test cases

• The system also gives clear
examples of buggy
implementations that their tests
do not detect.

33

Advantages
• Students are not testing their own

code
• The submitted tests are evaluated

based on the number of buggy
programs they detect from a large
corpus of buggy programs, not their
code coverage

• This feedback also gives them
practice reading, understanding, and
debugging code written by others

Rebecca Smith, Terry Tang, Joe Warren, and Scott Rixner. 2017. An automated
system for interactively learning software testing. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education. 98–103.

Tools for practicing testing in laboratory
settings
• Tools providing a laboratory infrastructure that help students to

practice different types of testing

• Architecture proposal for a software testing laboratory based on a
cloud platform (W. Wen, et al., "Design and Implementation of Software Test
Laboratory Based on Cloud Platform," 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security Companion)

• An automated framework for unit and integration testing and grading
for intermediate-level systems course projects. (Dee A. B. Weikle, et al.
2019. Automating Systems Course Unit and Integration Testing: Experience Report.
In Proc. of the 50th ACM Technical Symposium on Computer Science Education
(SIGCSE '19).

34

Tools that exploit Gamification
• Gamification has been defined as «the use of game design elements in

non-game contexts»
• Gamification may increase motivation for students studying software

testing.

• Two main categories of tools:
• Tools that implement a game with a specific game dynamic that try

to stimulate students by challenges and competitions. They include the
typical gamification elements such as reward points, badges, avatars,
and leader boards in a learning environment.

• Tools that rather offer a simulation/ education game where students
can practice testing on small/ toy examples.

35

Some examples
• HALO: A gameful approach to teaching software design and software testing – by

assignments, quests and rewards (2011)
• Bug Catcher: A system for software testing competitions on bug catching -

provides students with requirements, buggy code, and input fields to enter test
cases (2013)

• A testing Game- to do practice of black box, white box and mutation testing
using avatars, game levels, rewards (2017)

• Code Defenders: a mutation testing game where players take the role of an
attacker, who aims to create the most subtle non-equivalent mutants, or a
defender, who aims to create strong tests to kill these mutants (since 2016)

• A gamification tool used as a systematic strategy in the teaching of Exploratory
Testing (2019)

• An experimental card game for software testing (2016)
• ….

36

A Testing Game
• A game implemented as a Web

application to do practice of black box,
white box and mutation testing.

• The participant is represented in the
form of an avatar and has a set of
abilities similar to traditional 2D
games.

• The avatar can walk, run, jump, evade
or fight enemies.

• The levels in the game are directly
mapped to the three major topics
covered in game (black box, white box
and mutation), and they are
represented with a doors

37

Pedro Henrique Dias Valle, Armando Maciel Toda, Ellen Francine Barbosa, and
José Carlos Maldonado. 2017. Educational games: A contribution to software
testing education. In 2017 IEEE Frontiers in education Conference (FIE). IEEE, 1–8.

Code Defenders
• The Code Defenders game

created an environment where
the students can compete
against each other over the code
that is being under test by:

• attacking (introducing bugs) or
• defending (creating test cases

that will expose those bugs),
• learning the practical mutation

testing concepts in the process.

38

Gordon Fraser, Alessio Gambi, Marvin Kreis, and José Miguel Rojas. 2019.
Gamifying a software testing course with code defenders. In Proceedings of the
50° ACM Technical Symposium on Computer Science Education. 571–577.

.

• The game can serve an educational
role by engaging learners in
mutation testing activities in a fun
way.

• Experienced players will produce
strong test suites, capable of
detecting even the most subtle bugs
that other players can conceive.

• Equivalent mutants are handled by
making them a special part of the
gameplay, where points are at stake
in duels between attackers and
defenders

Code Defenders

39

The Attacker View

The
Equivalent
Mutant
Challenge
View

The
Defender
View

J. M. Rojas and G. Fraser, "Code Defenders: A Mutation Testing
Game," 2016 IEEE Ninth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Chicago, IL, USA, 2016,
pp. 162-167, doi: 10.1109/ICSTW.2016.43

Current State of
Software Testing in
Education

40

Current state of software testing in Academic
education
• Many works investigated the

state of software testing in
education in different parts of
the world:

• Australia
• Canada and America
• Hong Kong
• South Africa, Brazil, and abroad

41

Emerging Results:

“More testing should be taught ”

“Results indicated a deficiency for
all testing topics in practice
activities.

"Negative gaps in topics such as
test of web applications,
functionality testing and test case
generation from client
requirements/user stories"

…references…

• V. Garousi and A. Mathur, “Current state of the software testing education in north american
academia and some recommendations for the new educators,” in 2010 23rd IEEE Conference on
Software Engineering Education and Training, 2010, pp. 89–96.

• P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “Cs curricula of the most relevant universities in
Brazil and abroad: Perspective of software testing education,” in 2015 International Symposium on
Computers in Education (SIIE), 2015, pp. 62–68.

• I. S. Elgrably and S. R. B. de Oliveira, “A diagnosis on software testing education in the brazilian
universities,” in 2021 IEEE Frontiers in Education Conference (FIE), 2021, pp. 1–8.

• S. M. Melo, V. X. S. Moreira, L. N. Paschoal, and S. R. S. Souza, “Testing education: A survey on a
global scale,” in Proceedings of the XXXIV Brazilian Symposium on Software Engineering, ser.
SBES ’20. ACM, 2020, p. 554–563.

42

And what about teaching Testing in European
academic institutions?

• A recent study (2023) investigated the context of Sweden…

• A. A. Barrett, E. P. Enoiu, and W. Afzal, “On the current state of
academic software testing education in Sweden,” in 2023 IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2023, pp. 397–404.

• With the exception of this contribution, there is a lack of studies
specific to the European context

43

A recent investigation on the state of software
testing education in four European countries
• The state of the practice in software testing education in academic institutions

from Belgium, Italy, Portugal, and Spain was recently investigated in a
Course Mapping study, illustrated in:

• State of the Practice in Software Testing Teaching in Four European Countries, P.
Tramontana, B. Marin, A.C. Paiva, A. Mendez, T. E.J. Vos, D. Amalfitano, F.
Cammaerts, M. Snoeck, and A. R. Fasolino, to appear in IEEE-ICST 2024 proc.

• The study was conducted as part of the ENACTEST Project (https://enactest-
project.eu/)

• ENACTEST aims to investigate and improve the current practices in software
testing education, by proposing new software testing teaching materials, the so-
called capsules

44

European iNnovation AllianCe for
TESting educaTion

https://enactest-project.eu/
https://enactest-project.eu/

Goal, Research Questions and Target
Population
• Goal: To analyse software testing courses at the academic level and

their characteristics, for the purpose of understanding the state of the
practice with respect to software testing education.

• RQ1: How common are software testing related courses in the considered
academic context?

• RQ2: What are the educational organisational characteristics of these courses?
• RQ3: What aspects of software testing are most commonly taught?

• Target Population: Academic courses teaching software testing
topics from each of the four European countries

45

Steps

46

University
Selection

1
Course
Selection

2
Data Collection

3
Data Analysis

4

University Selection

47© GeoNames, Microsoft, Open Places, OpenStreetMap, TomTom
Con tecnologia Bing

6229 70

10

10

40

70

Serie1

From the list of 171 ranked Universities from the
2023 Scimago Institutions Ranking of Computer
Science Universities…

… We sampled at random 49 universities
(approximately 30% of all the 171 listed universities).

Software Testing related courses offered by the 49 sampled universities
were looked for in their institutional Web sites

Course Selection
• Bachelor’s and Master’s degrees

related to computer science (i.e.
Computer Engineering,
Computer Science, Software
Engineering, etc.) were analysed
as a priority.

• 117 courses that included
Software Testing topics were
admitted to the Data Collection
step

48

Relevant courses were manually selected,
based on their names:

“Software Testing”,
“Verification & Validation”,
 “Software Quality”…
“Software Engineering” and “Programming”…

Inclusion and Exclusion criteria were used to
select only relevant courses:
• The course syllabus contains a description of
the course topics.
• The course syllabus is written in English or in
the language of one of the ENACTEST Project
partners
• The course syllabus includes testing topics.

Data Collection
• From syllabus and curricula in the

official websites of the academic
institutions

• Extracted information:
• Country, University Name, Degree Name,

Degree Level, Course Name, Course Year,
Scientific Field

• Number of Credits, Number of Hours (Theory
and Lab Hours)

• Focus on Testing (Prevalent/ Partial),
• Assessment Methods, P. Languages,

Reference Books
• Taught Testing Topics

49

We distinguished:

• ST courses having a prevalent
focus on testing topics (i.e. more
than 75% of topics correspond to
testing),

• NST courses (non-specialized
testing courses)

The extraction was done by at least
two researchers per country and
validated by other two researchers

Collected Data available online:
https://zenodo.org/records/10527894

Results- RQ1
• RQ1: How common are software testing related courses in the

considered academic context?

50

• ST courses in 39% (19/49) of universities
• NST courses in 94% (46/49) of universities
• both ST and NST courses were offered

in only 14 out of 49 universities (29%)

With respect to ST courses
found in 56% of Swedish
Universities, we found ST
courses in:

• 37% of Spanish universities,
• 33% of Belgian,
• 24% of Italian, and
• 71% of Portuguese ones.

Results- RQ2
• RQ2: What are

the educational

organisational

properties of the

courses

(Degree and

Curriculum)?

51

68%

32%

CURRICULA OF ST COURSES

Computer Science

Computer
Engineering

27%

73%

DEGREES OF ST COURSES

Bachelor

Master

69%

31%

DEGREE OF NST COURSES

Bachelor

Master

50%48%

2%

CURRICULA OF NST COURSES

Computer Science

Computer
Engineering

Other

Results -RQ2: Year of Courses

52

• RQ2: What are the

educational

organisational properties

of the courses

(Year)?

Results RQ2: Course Names

53

ST course names -frequent
terms :

• Software Testing (10)
• Verification and

Validation (8)
• Software Quality (5)

ST less typical terms:

• Analysis of Software
Artifacts

• Planning and Testing of
Software Systems

• Robust Software
• Advanced Programming

Techniques

NST names:

• Software Engineering (44)
• Programming (20)
• Software Architecture

Design (10)
• Security (9)
• Software Quality (7)
• Software Project

Management (6)
• Agile Software

Development (1)

Results : Course European Credits- EC

54

ECTS- European Credit
Transfer and Accumulation

System (ECTS)

• ECTS is a standard
system for measuring
the effort required by a
student for a course

• One EC is equal to 28
hours of study

• 60 EC credits are the
equivalent of a full year
of study or work.

ST course credits:

• 6 EC for the majority
of ST courses (19)

• 5.68 credits on
Average for ST
courses

NST course credits:

• EC values ranging
from 3 to 12 EC,

• An average of 6.75
credits.

• But it was not possible
to determine exactly
how much of the
course time was spent
on testing

Theoretical, practical,
and laboratory

number of hours:

• information rarely
provided by the
course websites, or

• no standard way to
describe or
distinguish between
them.

Results : Course Assessment Methods

55

Open questions
Closed questions
Exercises
Homework
Project
Discussion

Six assessment
Methods

ST and NST courses present similar
percentages for each method

Most of the mapped courses
adopt more than one assessment method

Results
• RQ3: What aspects of software testing are commonly taught?

56

Test Design Technique

Testing Practice

Testing Level

Testing Type

Testing Topics classified according to the
Conceptual framework for testing offered
by the ISO/IEC/IEEE 29119 standard on
Software Testing.

Results- Test
Design
Techniques
• Specification-Based and

Structure-Based
techniques:

• present in 95% and 100% of
ST courses

• Experience-Based:
• Only in 9% of ST courses

• Other:
• In 18% of courses mutation-

based testing was taught (4
ST courses)

• NST courses:
• Specification-Based (37%)
• Structure-Based (31%)

57

ST % NST %

Results-
Testing Practices

• Most common Practices in ST:
• Automated Testing
• Model-Based testing
• And then Scripted, Exploratory,

Manual
• In NST courses:

• Automated testing
• Scripted
• Manual

• Other practices:
• Regression Testing
• TDD

58

ST % NST % Testing Practices

Results-
Testing Levels

59

ST % NST % Testing Levels

• Most common Levels in ST:
• Unit, Integration, System (similar)

• In NST courses:
• Unit Testing

• Acceptance Testing
• Less Frequent in NST (only 13%)

Results-
Testing Types

60

ST % NST % Testing Types

• Most common Types in ST and
NST:

• Functional Testing
• Performance
• Security

• Many other types not
mentioned at all

Main Findings- diffusion of ST and NST
courses

• Software Testing dedicated
courses were found in 39% of the
49 universities surveyed (mostly
offered at Master degree level),

• Ardic and Zaidman found
software testing dedicated
courses in 50% of the top 100
of the Times Higher Education
university ranking

• Barrett et al. found 56% of
universities with dedicated ST
courses in the Swedish context

• Software testing fundamentals
were included in at least one
course at every university (i.e., in
94% of surveyed universities)

• Most of the existing advanced
software testing techniques are not
taught to students and future IT
professionals.

• Far Too Limited!!!

61

Main Findings- theoretical vs practical
classes
• Difficult to find data about the number

of hours of theoretical classes and
practical classes for each mapped
course

• However, in 59% of ST courses we
found similar amount of hours for
theoretical and practical classes, with
a ratio of 1.03 between them

üThis approach is both a more
challenging and attractive strategy for
students!

• Assessment Methods mostly based
on Projects (in 60% of courses)

üThis is aligned with the practical
experience needed to learn complex
topics!

• A lot of fragmentation regarding
Software Testing Teaching Books

62

Main Findings- Testing Topics

• Structure Based and Specification
Based Testing almost always present,
but..

üExperience Based and Exploratory
testing almost always neglected in the
analysed 117 courses!

• Testing courses more inclined towards
the analytical school, where the
emphasis is on better testing through
improved precision of specifications,
instead of the context-driven school
that emphasizes exploratory testing

• Some Testing Types systematically
neglected by the analysed courses:

• accessibility testing, security testing,
and disaster recovery testing, among
the others

üThere is the necessity to bring current
academic offerings closer to the real
needs of the industry!

63

Other findings
• More standardized ways to describe the academic characteristics of

courses should be systematically adopted to facilitate the course
analysis

• A consolidated repository of academic courses in Europe is lacking

• Threats to validity
• Construct (risk of misinterpretation of collected information, due to non

standard descriptions on the web sites)
• Internal (only publicly available information was processed, but having

different levels of detail)
• External (The courses we selected may not be generalized to other countries,

or may not reflect the current general landscape of software testing education
in Europe at large)

64

A Closer look at the
Teachers’ point of
View

65

What is the teachers’ perspective?

• The Course Mapping study offers a high-level view about the
status of software testing education in the 4 European countries

• But it does not give specific information about:

• What is the detailed organization of the course?
• What Testing teaching practices do teachers use in their course?
• What Teaching Learning Tools do they adopt?
• What Gamification approaches do they propose?
• Are the teachers satisfied about the available materials? What are their

main desiderata?

66

A teacher survey to fill-in this gap…
• We designed and distributed a survey to Software Testing

teachers in order to collect their perspectives about the
considered topics

• At the moment the survey has been distributed to teachers from
several European countries

• It is still possible to participate in the survey
• if you are a software testing teacher in an academic/ research

institution and you are interested, please contact me by email ….

67

European iNnovation AllianCe for
TESting educaTion

Future Perspectives
in Software Testing
education

68

Keeping
curriculum
up-to-date

• Software testing methodologies, tools,
and technologies evolve rapidly.

• Educators must ensure that their
curriculum reflects these changes to
equip students with the most relevant
skills for the industry.

69

Focus on
automation
and
DevOps

• With widespread adoption of DevOps
practices and Continuous
Integration/Continuous Deployment
(CI/CD), there is a growing demand for
skills in automated testing and
continuous integration.

• Educators must prepare students with
the necessary skills to work in DevOps
environments and understand how to
integrate testing throughout the software
development lifecycle.

70

Non-
functional
testing
aspects

• Beyond functional testing, there is an
increasing importance placed on non-
functional testing aspects such as
security, performance, accessibility, and
usability.

• Educators need to provide students with
a deep understanding of these concepts
and related testing techniques.

71

Soft skills
and
collaboration

• Software testing involves not only
technical skills but also soft skills such as
teamwork, effective communication, and
problem-solving.

• Educators must integrate hands-on
learning opportunities and collaborative
projects into their curriculum to develop
these skills in their students.

72

Enhance
engagement,
motivation,
and learning

• Traditional teaching methods struggle to
engage students effectively, especially in
software testing.

• Gamification adds elements of fun,
competition, and interactivity, which can
significantly increase student
engagement and motivation to learn.

• Challenge-based learning initiatives (like
Hackatons and Competitions) can guide
students in a learning path through
exploration, collaboration, and problem-
solving processes

73

Integration
of new
technologies

• Emerging technologies such as artificial
intelligence, Generative AI, Internet of
Things (IoT), and cloud computing
require the integration of new testing
concepts and tools into educational
programs.

• Educators need to find ways to
incorporate these technologies into their
lessons and practical labs.

• Open Repositories offering different
types of «Testing Learning Objects» to
the educator community are needed

74

The experience of the ENACTEST
project
• In ENACTEST we are investigating learning strategies and designing

seamless teaching materials for testing that are aligned with industry and
learning needs.

75

European iNnovation AllianCe for
TESting educaTion

Online
Game for
for the
early
introductio
n of testing
for initial
programm
ers

Analogue
Card Game
for practice
of testing
strategies to
deal with
risks and
considering
quality
attributes of
SUTs.

Learning
Environmen
t for model-
based
testing

Learning
Environmen
t for Test
Smell
detection
and
removal
learning

Game for
practicing
Coverage-
based
automated
testing by
challenging
an
automated
test
generator

Online
game where
student can
create
mutants
and test
cases on
models.

Teaching
and
evaluation
materials
for state-
based
testing

Teaching
and
evaluation
materials
for BDD
testing

Penetration
testing
leveraging
Dynamic
Application
Security
Testing
(DAST)

ERASMUS plus Project 2022-2025

(https://enactest-project.eu/)

Conclusions

76

Conclusive Remarks

• We have analysed open challenges in Software Testing
Education and presented possible solutions, their benefits and
limitations

• The State of the Practice in software testing teaching shows
that there is still much work to do (in terms of course diffusion,
topics to be taught, practical approaches to introduce, …)

• Different types of initiatives (alliances among educators,
teachers and industry, competitions, gamification, sharing
experiences, teaching materials…) are needed to make
progress in this important field

77

78

Thank you for the attention!

